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Turbulent Couette flow in a plane channel at transitional Reynolds numbers is modeled 
by numerical integration of the Navier-Stokes equations for a viscous incompressible liquid. 
The friction coefficient, mean velocity profile, Reynolds stress, and certain average char- 
acteristics of the calculated three-dimensional secondary static-stationary flows agree well 
with the corresponding characteristics of real turbulent flows. The instability of laminar 
Couette flow relative to finite amplitude three-dimensional perturbations is established. 

i. We will consider the pressure-free flow of a viscous incompressible liquid in an 
infinite plane channel, the walls of which move at constant velocity in opposite directions 
(planar Couette flow). Stability of a laminar Couette flow relative to infinitely small 
perturbations has been studied exhaustively (see the review [i]). In particular, stability 
has been strictly proven for infinitely small perturbations at arbitrary Reynoldsnumber 
[2]. On the other hand, it has been established experimentally that at R ~ 103* disruption 
of the laminar flow regime with transition to turbulence can occur [3, 4]. This experimental 
fact has been related to instability of the flow in question relative to finite amplitude 
perturbations. 

When methods of the nonlinear theory of hydrodynamic stability are used to study stabil ~ 
ity of Couette flow serious difficulties arise, related to the absence of a neutral curve. 
The majority of studies have considered two-dimensional Navier-Stokes equations [5-10]. The 
critical Reynolds numbers obtained in [5-8] differ from each other by an order of magnitude 
and more. The results of [9, i0] indicate stability of Couette flow relative to two-dimen- 
sional finite perturbations. 

Turbulent Couette flow was modeled by numerical integration of the Navier-Stokes equa- 
tions in [11-14]. At R = 5000 [ii] found that two-dimensional finite amplitude perturbations 
decay. All calculations of three-dimensional flows were performed over very brief time in- 
tervals. Calculations were completed at the stage of abrupt increase in perturbation ampli- 
tude, while the mean velocity profilesdiffered only insignificantly from the laminar case. 
It is clear that one cannot speak of establishment of any secondary flow regime here. In 
[12] the authors studied behavior over time of a perturbation in the form of a superposition 
of a finite amplitude two-dimensional and a small three-dimensional perturbation. It de- 
veloped that at R ~ 103 the three-dimensional perturbations increase exponentially while 
the two-dimensional decay. As before, calculations were performed over small time intervals. 
In [13] three-dimensional flow as modeled at R = 1450. In the calculations the pulsation 
energy oscillated with a remarkably high amplitude, while the velocity profile had an anom- 
alous form (the sign of the velocity changed at three points). Apparently this was related 
to the fact that an insufficient number of base functions were used in representing the ap- 
proximate solution. We will also note [14], which performed modeling of turbulent Couette 
flow at R = 750-1750. At all Reynolds numbers considered, three-dimensional secondary flows 
were obtained. The calculated profiles of velocity and intensity of mean-square velocity 
pulsations agreed qualitatively with experiment. Yet for a significant number of important 
characteristics there was significant disagreement with experimental data: Reynolds stress 
distribution in the central portion of the channel was inhomogeneous, the mean velocity pro- 
file did not agree with a logarithmic profile, and the friction coefficient was significantly 
lower than experiment. 

2. The present study will investigate stability of Couette flow relative to finite 
perturbations, and model secondary static-stationary flows which can be compared to the turbu 

*Here and below, R = Uwh/v , where U w is the speed of the walls, h is the channel half-width, 
and ~ is the kinematic viscosity coefficient. 
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TABLE 1 

Calcula- Meth- 
numberti~ R a0 E' (0)-i0~ T E' (T).i0 s od �9 M P 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
t2 
t3 
14 
15 
16 

5 000 
5 000 
5 000 
5 000 
5 000 

10 000 
t0 000 
t0 000 
t0 000 
5 000 
5 000 
5 000 
5 000 
5 000 
i0 000 
10 000 

t ,25 
t,25 
t,25 
1,25 
2,0 
t,251 
1,251 
2,0 i 
2,0 i 
o,5 1 
0,3 i 

0,i5 I 
0,3 I 
0,15 

0,098 
0,88 
0,39 
9,8 
0,85 
0,25 
6,3 
0,34 
2,6 
0,4 
0,22 
0,8 
3,0 
0,48 

'0,42 
1,9 

100 0,34 
150 3,4 
t50 0,59 
600 0,3 

70 0,81 
250 1,2 
500 0,3i 
250 0,0i6 
360 t ,6 
250 2,1 
250 1,2 
350 0,81 
500 3,2 
250 5,0 
250 4,6 
600 12,9 

2(3) 
2(3) 
2(3) 
2(2) 
2(3) 
2(3) 
2(3) 
2(3) 
2(3) 
1 
t 
1 
1 
t 
1 
1 

0,25 
0,25 
0,25 
0,1 
0,25 
0,25 
0,25 
0,25 
0,1 
0,1 
0,t 
0,t 
0,025 
0,! 
O,t 
0,1 

9 
9 
9 
9 
9 
9 
9 
9 
9 

33 
33 
33 
33 
33 
33 
33 

31 
31 
3t 
3t 
3t 
3t 
31 
31 
3t 
33 
33 
33 
33 
33 
33 
33 

lent flows observed in experiment. Two-dimensional and three-dimensional perturbations will 
be considered, periodic along the homogeneous coordinates x, y with periods X = 2v/~0, Y = 
2~/$0. The numerical solution of the Navier-Stokes equations written in Gromeki-Lamb form, 
will be performed by methods i and 2 (see [15, 16], respectively). In these methods the 
Galerkin method is used along the variables x, y with trigonometric polynomials as the base 
functions. In writing the solution for the normal variable z in method i, Chebyshev poly- 
nomials of the first sort are used, while method 2 uses Jacobi polynomials pq(i,1)(z). 

In method i, integration over time is performed by the partial step method. In the 
first and third partial steps the action of the term [ v, rot v] is considered with second- 
order accuracy in t. To approximate the equations in z, the colocation method is used with 
nodes zs = cos (~s s = 0, i ..... L. In the second partial step the action of the total 
head gradient VH and the dissipative term rAy,are considered, using the incompressibility 
equation and the condition of adherence of the liquid to the channel walls. In this step 
the time approximation is carried out by an implicit technique, while the Petrov spectral 
method is used along z (for more detail, see [15]). 

Method 2 utilizes a single step, and an implicit Crank--Nicholson type method of second- 
order accuracy is used to approximate the original equations over time, while along z a co- 
location method is used with nodes zs z 0 = -i, zl, ..., ZL-1, ZL = i, where zs s = i, ..., 
L - i are nulls of the Jacobi polynomial PL_I(I,I)(z). Solution of the discrete problem 
is determined by iteration. We will note that, for this method, given the condition of con- 
vergence of the iterations, the discrete analogs of the laws of conservation of momentum 
and energy are satisfied exactly. This allows calculating turbulent flows in a plane chan- 
nel with sufficiently large step in time [16]. 

Modeling of two- and three-dimensional pressure head-free flows was performed at transi- 
tional Reynolds numbers. For the initial conditions a laminar flow was specified, upon which 
various finite amplitude perturbations were imposed. Method 1 or 2 was then used to calcu- 
late the evolution of the flow until its exit to steady state, i.e., to a secondary or lami- 
nar flow. Exit to a secondary regime was monitored by stabilization of the basic integral 
flow characteristics (friction coefficient, energy pulsations, etc.). We note that existence 
of a secondary flow implies instability of the laminar flow relative to finite perturbations. 

3. The approach described above was used to systematically search for pressure head- 
free two-dimensional secondary flows in a plane channel at R = 5000 and R = 10,000. A series 
of calculations were performed for various intervals of flow periodicity and initial condi- 
tions. Characteristics of the two-dimensional calculations are presented in Table i. The 
first series of calculations (Nos. 1-9) modeled evolution of finite perturbations with perio- 
dicity intervals X ~ 2~ (~0 ~ 1 are short-wave perturbations). The initial perturbation 
used was that eigenfunction of the Orr-Sommerfeld equation boundary problem with the least 
attenuation. The initial amplitude of the velocity perturbation was varied from 5 to 35% 
of the wall velocity (Table 1 shows values of the perturbation energy E' at t = 0). In all 
these calculations complete attenuation of perturbations was found: in the final portion 
of the calculations pulsations decayed by linear theory, while the flow tended to a laminar 
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Couette flow. Table 1 shows values of the perturbation energy E' at the end of each calcula- 
tion, i.e., at time t = T. Also shown is the method used for the calculation, the time step 
~, and the number of base functions used to represent the approximate solution in the vari- 
ables x-M and z-P. For method 2, the number of iterations is given in parentheses. 

In the subsequent series of calculations (Nos. 10-16) evolution of longwave perturbations 
(s 0 ~ 0.5) was modeled for various initial amplitudes. The initial condition consisted of 
several Fourier harmonics in the representation of the approximate solution (in calculations 
10-13 and 15, four harmonics; and in 14 and 16, eight). Damping of perturbations was also found 
in these calculations. However, it should be noted that in comparison to the shortwave case 
at an analogous or smaller initial perturbation amplitude attenuation of pulsations to the 
level where nonlinear interaction of the perturbations has practically no effect occurs over 
greater time intervals. 

Thus, the calculations performed for various flow periodicity intervals and initial 
perturbation amplitudes did not reveal secondary (nonattenuating) two-dimensional flow re- 
gimes. It is clear that these studies are not exhaustive: only moderate Reynolds numbers 
were considered, the flow periodicity was varied over a relatively small range, only eigen- 
functions of the linear problem were used as the initial condition, and, finally, a narrow 
class of perturbations was considered, with periodic dependence on the longitudinal coordi- 
nate. Nevertheless, the results of the present calculations, as well as the results of [7~ 
9] indicate that plane Couette flow, at least in the transition region, is stable relative 
to two-dimensional periodic finite amplitude perturbations. Apparently this is also true 
of arbitrary two-dimensional perturbations. 

4. Three-dimensional flows were calculated for R = 750-5000; essentially shortwave 
perturbations were studied (see Table 2). In all calculations the approximate solution was 
represented by 9 • 9 Fourier harmonics in the variables x and y and 33 polynomials in z (for 
method i, Chebyshev polynomials; for method 2, Jacobi polynomials). The integration step 
over time T and the number of iterations for method 2 are shown in Table 2. 

In the first calculation a three-dimensional flow with R = 5000 was modeled. For the 
initial condition the velocity field of the laminar flow was specified, with a finite-ampli- 
tude perturbation imposed thereon, in the form of a superposition of three eigenfunctions 
of the linear problem for wave numbers (~, 6) = (s0, 0), (0, 60), (s0, 60). The energy of 
this perturbation El(0) is given in Table 2. Flow evolution was calculated with method 2. 
In the initial stage there was an abrupt increase in the friction coefficient and total en- 
ergy of the perturbations, after which, at t e 200 a secondary flow regime was established 
with velocity profile characteristic of turbulent Couette flow. Thus, even in the first 
three-dimensional calculation, a secondary regime was obtained for head-free flow in a plane 
channel. 

The next calculation was performed with the same parameters as the preceding one, but 
by method i. For the initial condition the flow velocity field obtained at the end of calcu- 
lation i was used. Flow evolution was calculated for a significant time interval for sta- 
tistical processing of the results. Calculation of mean secondary flow characteristics 
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TABLE 2 

Calcula- 
tion 
number 

t 
2* 
3* 
4* 
5* 
6* 
7"  

8 
9 

t0 
t t  
t2 
t3 

5000 
5000 
4000 
2900 
t450 
1000 
750 

5000 
5000 
5000 
5000 
2900 
2900 

6r o 

t ,25 2 
i ,25 2 
i ,25 2 
1,25 2 
t,25 2 
i,25 2 
t >25 2 

0,5 2 
1,25 1 
3,t25 5 
5,0 8 
t,25 3 
2,0 2 

[~o ]E '  (0) . t0  = T. I0  -2 

0,011 
1,6 
2,5 
2,5 
2,6 
2,6 
3,1 

2,6 
2,6 
2,6 
2;6 
2,8 
2,8 

54 
2C 
34 
16 
t i  
t2 

12 
40 

5 
6 

16 
15 

~.I0 E"-'. i 0 2 

t,58 1,7 4,5 
1,54 2,5 4,8 
1,73 2,3 5,4 
1,48 2,7 7,7 
t,45 2,6 9,5 
t,70 3,0 9,7 
Ex i t  to  laminar  

regime 
t,79 2,7 4,7 
1,55 2,0 3,0 
0,93 1,2 4,2 
0,92 t ,2 3~6 
1,40 2,5 7,t 
1,25 2,4 6,t 

~s.io: I~ t~- 
2(4) 
1 
1 
1 
t 
1 
l 

l 
t 
2(3) 
2(3) 
t 
1 

0,1 
0,05 
0,05 
0,05 
0,05 
0,05 
0,05 

0,05 
0,05 
0,15 

0,075 
0,05 
0,05 

*In calculations marked by an asterisk the initial condition 
used was the flow velocity field obtained at the end of the pre- 
ceding calculation. 

I,+AT 
i 

]=</ (x ' t )>=u~t- -  2XYAI' ~ 5 / (x , t )  dxdydzdt, 
D t, 

D ~  [x: O~,7:~X,O~y~Y, Izl~<t] 

was performed for various t, z 103 and intervals AT. It was thus established that change 
in the initial integration point t, as well as increase in the interval AT = 102 leads to 
no noticeable changes in the mean secondary flow characteristics. This indicates that the 
secondary regime obtained is statically ste&dy state. Table 2 presents values of the total 
perturbation energy E, the pulsation energy E', and the friction coefficient Cf. For com- 
parison, we will note that in the experiments of [17] for turbulent Couette flow in a plane 
channel at R = 4930 a friction coefficient Cf = 4.6"10 -3 was obtained. 

In Fig. la z line i is the velocity profile of the laminar flow, line 2 is the mean ve- 
locity profile u(z) = <u( x, t)> x t of the three-dimensional secondary flow obtained in cal- Y 
culation 2. Other lines are experimental results at various Reynolds numbers: 3) R = 8200 
[18]; 4) R = 17,000 [17]; 5) R = 28,500 [19]. In Fig. ib, the velocity profile of the secon- 
dary flow is shown in semilogarithmic scale (points i correspond to colocation nodes), while 
points 2 are experimental results [20] for R = 9500. The mean velocity profile obtained 
in the calculation agrees quite well with experiment and the universal wall law: u + = z + 
(curve 3) for z + ~ i0 and u + = 2.55 Inz + + 5.2 (curve 4) for z + ~ 30, where u + = (i - u)/u~, 

( ~ ~t~. 
z + = (i -- z)u~/~, ze [0, i], u~= v-~-z z=• Moreover, in the flow core Iz I  ~ 0.5 the 

secondary flow velocity profile (Fig. ic, curve I) agrees with the velocity defect law, in 
which the variables used here can be written in the form u/uT = Rfz, Rf = 5.9 (Curve 2). It 
was shown in the experiments of [20] that with increase in R the coefficient Rf decreases, 
~nd f0r R = 9500, Rf = 5.7 (Fig. ic, points). 

Distributions of mean-square pulsations of each component of the velocity vector v' = 
(u', v', w')% for the three-dimensional secondary flow at R = 5000 and a turbulent flow at 
R = 9500 [20] are shown in Fig. 2a, b [I) u'/uT; 2) v'/uT; 3) w'/u~], z = 1 - z. Comparison 
of the graphs shows at least good qualitative agreement. In the central portion of the chan- 
nel, Izl ~ 0.5, both calculation and experiment show a homogeneous distribution of the char- 
acteristics considered. The asymptotic dependence on the variable z in the vicinity of the 
channel wall for mean-square secondary flow velocity pulsations is shown in Fig. 2c. It 
is evident that the longitudinal and transverse components at z + ~ 5 have a linear dependence 
u'/u~ = Au z+, v'/u~ = Av z+ (curves 1 and 2), while for the normal component at z + ~ i0, the 
dependence is quadratic, w'/u~ = Aw(z+) 2 (curve 3), while A u = 0.39, A v = 0.22, A w = 2.3"10 -3 . 

#u' = (<u2>xyt)I/2; u is the deviation of the longitudinal velocity component from the mean 
value; and v', w' are defined similarly. 

2 2 6  



4 4 

a i 

0,5 ~ 1,0 0 
C 

~Igll i 
�9 

0,5 "~ ~,0 

o ,o + o ,oo 2 o o #  

Fig. 2 

a 

7 
m-~ m - E. - m -_ -_ - 

O, 5 "z" ,0 0 200 400 (z +)3 

Fig. 3 

Similar asymptotic dependences have been obtained in experiment [21] for developed turbulent 
Couette flow at R = 28,500. In this case, A u = 0.28, A v = 0.08, A w = 5"10 -3 . Since the 
Reynolds numbers in the calculations and experiment differ significantly, we can speak only 
of qualitative agreement here. 

The Reynolds stress ~(z) = -<UW)xyt/U~ 2 for the secondary flow at R = 5000 is shown 
in Fig. 3a (line), while the points are experimental results [20] for R = 9500. The good 
agreement is evident. Figure 3b shows Reynolds stress in the vicinity of the channel wall. 
Here, at z+ ~ 5 we have the asymptotic dependence �9 = AT(z+) 3, where A~ = 4.9"10 -~. We 
note that use of numerical integration of the Navier-Stokes equations for pressurized turbu- 
lent flow in a plane channel at moderate Reynolds number has yielded similar expressions 
for the mean-square velocity pulsation and Reynolds stress, with A u = 0.36, Av= 0.119, A w = 
8.6.10 -3 , A T = 7.2"10 -4 [22]. 

Local mean distributions over z of the perturbation energy production P(z)=T(z)~ ~ 

and dissipation D(z) = -v<(Vu) 2 + (Vv) 2 + (Vw)Z>xyt/U~ 3 for the secondary flow under con- 
sideration are shown in Fig. 4a (curve i, P; curve 2, D). For perturbation energy production 
experimental results from [20] at R = 9500 are also shown (points). Figure 4b shows the 
function B(z) = P(z) + D(z), which characterizes the balance between energy production and 
dissipation by perturbations. In the vicinity of the channel wall energy dissipation takes 
place. In the range 0.62 ~ Izl ~ 0.96 the energy transferred from the main flow to pulsations 
exceeds dissipation, with the generation maximum being reached near the walls Izl = 0.94. 
It is interesting that in the flow core Izl ~ 0.6 production and dissipation of energy by 
perturbations practically compensate each other. 

5 shows turbulent viscosity v t ~ ~(z)u~/~ for the secondary flow at R = 5000 Figure 

(line) and for a turbulent flow at R = 9500 [20] (points). In the central portion of the 
channel the ~t values for the secondary flow are slightly less than the experimental ones. 
This can apparently be explained by the fact that the Reynolds numbers in the calculation 
and experiments differed by a factor of almost two times. 
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In the subsequent Calculations 3-7 (Table 2) the flow velocity field obtained at the 
end of the preceding calculation was used as the initial condition. Three-dimensional se- 
condary flows were found for R ~ 103 . Secondary flows were not obtained for lower R in the 
periodicity interval X = 2~/1.25 and Y = ~. Thus, instability Of plane Couette flow rela- 
tive to three-dimensional periodic finite amplitude perturbations at R ~ 103 has been estab- 
lished. This result agrees fairly well With the experimental data of [3]. It is possible 
that consideration of long-wave perturbations miRht permit achievement of three-dimensional 
secondary flows at lower R. 

Spatially periodic secondary flows in a plane channel for fixed Reynolds number form 
a Lwo-parameter family of solutions of the Navier-Stokes equations, dependent on the wave 
numbers %, ~0. Calculations 8-13 (Table 2) were performed in order to clarify how change 
in ~0, ~0 affect the integral characteristics of the secondary flows. The initial condi- 
tions in these calculations were specified just as in calculation i, with corresponding %, 
80 chosen in each case. In the calculations which considered the Same number of base fun- 
ctions were used in r&presenting the approximate solution as in the preceding calculations. 

Comparison of calculations 2, 8, and 9 show that decrease in =0 or ~0, corresponding 
to increase in the corresponding flow periodicity integrals, leads to some reduction in the 
friction coefficient and increase in the total perturbation energy. In turn, growth in s0, 
80 (calculations 2, i0, ii and 4, 12, 13) produce a reduction in both the friction coeffi- 
cient and the total perturbation energy. It is Clear that for each fixed value R Z 103 there 
exist %*, ~0" at which maximum friction is realized. Secondary flows With periodicity in- 
tervals X* = 2~/%*, Y* = 2~/$0" can be termed limiting [15]. In the plane of the variables 
(R, Cf) the limiting secondary flows correspond to a curve which is the upper resistance 
boundary for the entire infinite set of Secondary flows. Even approximate definition of 
this boundary is an extremely difficult problem. In the present study a coarse estimate 
was obtained for ~0", G0* only at R = 5000. 

Calculations i0 and ii were also performed with the goal of estimating the extent of 
the region of energy-containing vortices in wave number space. It developed that in the 
intervals ~e [5, 20], 8 e [8, 32] the harmonic energy decays by less than an order of magni- 
tude. This indicates that for pressure head-free flow at transient Reynolds number (R = 
5000) the given region is quite extended and its boundary is located outside the wave-number 
range of interest here, i.e., at = > 20, 8 > 30. For comparison we note that in the case 
of pressurized secondary flow in a plane channel, also at transitional Reynolds number, in 
the segments ~E [1.3; 13], ~ [2; 20] harmonic energy attenuation comprises more than two 
orders of magnitude. Apparently the elevation of mean-square velocis pulsations obtained 
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in the present study as compared to experiment is related to insufficient resolution of the 
region of energy-containing scales, i.e., in representing the approximate solution in the 
homogeneous variables x, y a small number of base functions was used. 

In conclusion, we note that despite the relatively small number of degrees of freedom 
used to describe three-dimensional secondary flows, it has been possible to obtain the basic 
integral characteristics of turbulent Couette flow in a plane channel at transitional Rey- 
nolds numbers. At R ~ 103 instability of laminar Couette flow relative to three-dimensional 
finite perturbations has been established. In addition no nonattenuating two-dimensional 
perturbations could be found at R % i0 ~. 
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